DERIVATION OF EQUATIONS OF MOTION OF A SLIGHTLY
RAREFIED GAS AROUND HIGHLY HEATED BODIES
FROM BOLTZMANN'S EQUATION

V. Ya. Rudyak UDC 533.6.011.8

The motion of a slightly rarefied gas (K <1, where K is the Knudsen number) around highly
heated bodies is examined. On the assumption that the characteristic macroscopic velocity
of gas motion generated during contact with a highly heated body is on the order of or much
greater than the velocity of the impinging stream, the corresponding hydrodynamic equations
are derived from Boltzmann's equation by Hilbert's method [1]. A qualitative study is made
of the region of applicability of the equations obtained. A class of flows of a continuous medi-
um in which the characteristic change in enthalpy fs much'larger than the characteristic
kinetic energy was studied in [2]. The Navier—Stokes equations with boundary conditions of
adhesion proved to be inadequate for a description of these flows since it was already neces-
sary in the first basic approximation to take into account part of the Barnett terms and slip-
page. The autbors of [2] suggest using simplified Barnett equations with the condition of
creep, with the Barnett terms being on the same order as the inertial and Navier —Stokes
terms. On the other hand, it is known that the Barnett equations are derived on the assump-
tion that the additional terms are small in comparison with the Navier —Stokes and Eulerian
terms. This makes it desirable to obtain equations describing this class of flows directly
from Boltzmann's equation.

1. As shown in [3], the motion of a gas around highly heated bodies must be classified as a function
of the parameter

w = uxlug (1.2)

where u, is the characteristic velocity of the macroscopic gas motion produced during contact with the
highly heated body and u,, is the velocity of the impinging stream.

Simple estimates show that uy ~ £v/L, where v is the kinematic coefficient of viscosity, L is the
characteristic linear dimension of the body around which the flow occurs, € ~ AT/T < o (1), and AT is
the characteristic temperature drop.

When w > 1 the gas motion is described by the usual Navier —Stokes equations [3].

The flows of a continuous medium when w ~1 and w <« 1 are of interest. In this case the characteris-
tic velocity of the motionproves to be on the order of u,, and the Reynolds number can be estimated in the
following way:

Re = ugLiv ~¢ (1.2)
In addition, £ » M, ?, where M, is the Mach number of the impinging stream. The Boltzmann's
equation for this class of flows has the usual form [4]

K (8f/9t + E, ofidz) = J (f, P (1.3)
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We will seek a solution for Eq. (1.3) in the form
f=© L Kfv 4. K¥o 4 . (1.4)

Substituting (1.4) into (1.3) and collecting terms with the same powers of K we obtain the recurrent
system of equations

J (0, f0) = 0
27 (f, fo) = L7 45 A (L.5)
2749, 1) = a" i , fn)

We determine the first five moments of the distribution function in the following way:
p = p@ 4 Kp® 4+ K%® 4+ .
= Kuf® + K%® 4+ ... (1.6)
p= p(o) Kp(l) + K2p(2) 4 ...

The distribution function of the null approximation is locally Maxwellian, with
PO = S fodE,  pOy© = ngfm At =0, 3pO= S§2f(o) dz (1.7)

For solvability of the next integral equation of system (1.5) the following condition must be satisfied:

S( a4 ® L A0 ’”)w,dgzo

(1.8)
(r=0,1,234 tYo=19¢;=8,i=123 %=
From this, taking (1.7) into account, we obtain
ap(o) . aP(o) ap(o) .
at 0, ot dz, =0 (1.9)

1

We seek the solution of the integral equation determining f ® using the well-known method of [5]

0 = — = 10 QRIOV A& L5 ¢ Z for, ¥,
(1.10)

where R is the gas constant and yr(‘) are certain functions of x and t, r=0, 1, 2, 3, 4.

In particular, for Maxwellian molecules

A =20 (e-3)

where () is the coefficient of viscosity of the null approximation, so that p©~ T}

. From the condition of solvability of the integral equation for the distribution function of the second
approximation we obtain a system of equations which p(), u;j(®, and p® must satisfy:

6p(l) + ap(o)ui(l) aui(l) 1 (1)

ap

3 oz, " 3 EONNES =0, (1.11)
) )

ap(l) 5 Ou; ) aq

ot TP T3 -=0
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Here the heat-flux vector qi(i) of the first approximation is calculated from the distribution function

(1.10)
g = — A 9T ©)/3z; (1.12)

where 7\(") is the coefficient of thermal conductivity of the null approximation.

The conditions of solvability of the integral equation for f(3) lead to the system of equations

@ '
i?)T + _"_ (oW + pOIL®) = 0
au (9 du, o M 5,0 @  3p @
(0) o= _ P P P i
P + o0y Oi p(0) oz oz, Oz; 0 (1.13)
op® ou (2 du (1) o)
e +—-(p<0)u(2)+p<l)u 0y 1 _p(m CRAgE 1 2 2 pw 42 a;; —0
i

The stress tensor p?) and the heat-flux vector q4 () of the second approximation are determined from
the function f(®. The inteéral equation for f(?) is solved by the method of expansion by Sonine polynomials
[6]. As a result we find

> p,(O)Z 62T(°) P(°)2 aT® HT@

- K o p(°)T(°> 92,02 > pOT® N0z, oz >

T — 0 arw (1.14)
oz,

i i

(Ai> = Yo (Ai; + Az) — o84k

P = —2u© <

qi(2) = — Al

For Maxwellian molecules A{t) = k(o)T(i)/T@); K, and K, are constants.

In the particular case of stationary gas motion Egs. (1.9), (1.11), and (1.13) are reduced to the system
of equations

5 ) p(@y (1)
0z; =0, oz, =
W g
-5 Ouy 9 (1.15)
— p® —_ =
p oz + dz;
(n @  9p®
au( ap P]"
(0)g; (1) =
01 - oz, + oz, + oz, 0

Since the slippage velocity caused by the temperature gradient at the wall is of a primary order of
magnitude, as the boundary conditions at the wall for the system (1.15) one must take the condition of creep

] p® 570
u(fll)n=o Bp(o)T(o) 3‘x|n=o (1.16)

where n and T are the normal and tangent to the surface, and § is a constant. The slippage velocity caused
by the transverse velocity gradient and the temperature drop at the surface are of a much smaller order
(according to the Knudsen number) than the primary velocity and temperature, respectively.

Then, just as in [2], one can show that the characteristic drop P(z) (P(? —p(z) + p(z)éi ;) across the

Knudsen layer is on the order of K3, while the drop q( 1 is on the order of K?, and the characteristic varia-
tions of these values in the stream are on the order of K? and K, respectively. Therefore, the variation of
13) and q?) in the Knudsen layer can be neglected.

2. The solutions of the system of equations (1.15) differ in general from the solutions of the simpli-
fied Barnett equations which are used in {2].

Let us examine, for example, the motion of an incompressible gas. In this case, because 8p(°) /9xi=
0, the terms in pg?) connected with temperature gradients become equal to zero and the momentum equa-

tion of system (1.15) is reduced to the Navier —Stokes equation. Moreover, in solving this problem by the
Chapman— Enskog method, i.e., using the Barnett equations, the terms connected with temperature gradients
remain, and moreover, in a number of problems they are the largest terms.
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The solutions of system (1.15) will differ from the solutions of the Barnett equations for the problem
of the motion of a gas around an unevenly heated body with € ~ 1 and large wall-temperature gradients,
VTw~1l. I & ~1but VT, <1, the solution of system (1.15) and of the Barnett equations leads to the
same results,

The Hilbert and Chapman—Enskog methods also lead to the same results in a study of gas flows
around uniformly heated bodies when the wall temperature differs little from the temperature of the
impinging stream.

Thus the Hilbert method leads to the same results as the Chapman—Enskog method in the case of
small temperature gradients.

It is usually assumed [4] that in the Hilbert method the number of boundary conditions in the corre-
sponding hydrodynamic equations does not depend on the order of the approximation and is the same as for
Euler's equations, whereas in the Chapman—Enskog method the number of these boundary conditions can
increase with a growth in the number of approximations. Neither of these assumptions is confirmed in the
study of the present problem. Because of the degeneracy of the problem the same number of boundary con-
ditions are needed for the solution of the simplified Barnett equations as for the Navier —Stokes equations,
On the other hand, Euler's equations in Hilbert's method do not give the flow any concrete definition. The
same number of boundary conditions as in the Chapman—Enskog method are required in using the second
approximation [system (1.15)].

The author thanks V. V. Struminskii and V. N. Zhigulev for discussion of the work.
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